Strategies for improving the lithium-storage performance of 2D nanomaterials

نویسندگان

  • Jun Mei
  • Yuanwen Zhang
  • Ting Liao
  • Ziqi Sun
  • Shi Xue Dou
چکیده

2D nanomaterials, including graphene, transition metal oxide (TMO) nanosheets, transition metal dichalcogenide (TMD) nanosheets, etc., have offered an appealing and unprecedented opportunity for the development of high-performance electrode materials for lithium-ion batteries (LIBs). Although significant progress has been made on 2D nanomaterials for LIB applications in the recent years, some major challenges still exist for the direct use of these sheet-like nanomaterials, such as their serious self-agglomerating tendency during electrode fabrication and low conductivity as well as the large volume changes over repeated charging–discharging cycles for most TMOs/TMDs, which have resulted in large irreversible capacity, low initial Coulombic efficiency and fast capacity fading. To address these issues, considerable progress has been made in the exploitation of 2D nanosheets for enhanced lithium storage. In this review, we intend to summarize the recent progress on the strategies for enhancing the lithium-storage performance of 2D nanomaterials, including hybridization with conductive materials, surface/edge functionalization and structural optimization.These strategies for manipulating the structures and properties of 2D nanomaterials are expected to meet the grand challenges for advanced nanomaterials in clean energy applications and thus provide access to exciting materials for achieving high-performance next-generation energy-storage devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices

Cobalt oxides, such as Co3O4 and CoO, have received increased attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent development in the rati...

متن کامل

Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets for High-Performance Sodium and Lithium Storage.

Two-dimensional (2D) nanomaterials are one of the most promising types of candidates for energy-storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt-/nickel-based hydroxides and oxides. The sodium and lith...

متن کامل

Layered microporous polymers by solvent knitting method

Two-dimensional (2D) nanomaterials, especially 2D organic nanomaterials with unprecedentedly diverse and controlled structure, have attracted decent scientific interest. Among the preparation strategies, the top-down approach is one of the considered low-cost and scalable strategies to obtain 2D organic nanomaterials. However, some factors of their layered counterparts limited the development a...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Improving Data Grids Performance by Using Modified Dynamic Hierarchical Replication Strategy

Abstract: A Data Grid connects a collection of geographically distributed computational and storage resources that enables users to share data and other resources. Data replication, a technique much discussed by Data Grid researchers in recent years creates multiple copies of file and places them in various locations to shorten file access times. In this paper, a dynamic data replication strate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017